Names of the Week
*
*
Word of the Week
 More

Top 1000 Most Popular U.S. Baby Names Of 1911

* If Year is set to 'All', Compare To may only be set to 2018 and Order By defaults to Number High to Low.
** If Compare To year is not Year-1, Top may only be set to 100.

 

Page  of  20
1911 Popular Names U.S. - Top 1000 Baby Names
  Change from
1910
  Change from
1910
Girls Number
of Girls
% Rank Number Boys Number
of Boys
% Rank Number
1 Mary 24,390 5.520 0 1,542 1 John 13,446 5.570 0 1,996
2 Helen 11,801 2.671 0 1,322 2 William 10,593 4.388 1 1,749
3 Margaret 9,279 2.100 0 1,053 3 James 9,951 4.122 -1 756
4 Dorothy 8,869 2.007 0 1,551 4 George 6,586 2.728 1 1,145
5 Ruth 8,003 1.811 0 791 5 Robert 6,526 2.703 -1 917
6 Anna 6,753 1.528 0 317 6 Joseph 6,488 2.688 0 1,260
7 Elizabeth 6,298 1.425 0 498 7 Charles 5,725 2.372 0 940
8 Mildred 6,271 1.419 0 579 8 Frank 4,314 1.787 0 546
9 Marie 5,017 1.136 0 227 9 Edward 4,164 1.725 0 756
10 Frances 4,967 1.124 1 519 10 Thomas 3,292 1.364 2 441
11 Alice 4,813 1.089 -1 142 11 Henry 3,167 1.312 -1 268
12 Florence 4,424 1.001 0 142 12 Walter 3,074 1.273 1 478
13 Lillian 4,367 0.988 1 240 13 Harry 2,538 1.051 3 560
14 Rose 4,151 0.940 2 314 14 Willie 2,492 1.032 -3 -405
15 Ethel 4,141 0.937 -2 -5 15 Albert 2,478 1.027 -1 295
16 Evelyn 4,075 0.922 1 298 16 Harold 2,448 1.014 2 539
17 Edna 3,957 0.896 1 293 17 Paul 2,393 0.991 -2 388
18 Gladys 3,933 0.890 -3 91 18 Arthur 2,376 0.984 -1 434
19 Louise 3,725 0.843 1 268 19 Raymond 2,088 0.865 0 351
20 Catherine 3,565 0.807 2 404 20 Richard 2,030 0.841 1 376
21 Irene 3,502 0.793 0 221 21 Louis 1,838 0.761 3 269
22 Ruby 3,372 0.763 5 479 22 Fred 1,808 0.749 0 221
23 Grace 3,304 0.748 0 159 23 Clarence 1,775 0.735 -3 69
24 Annie 3,298 0.746 -5 -221 24 Ralph 1,674 0.693 4 396
25 Hazel 3,290 0.745 -1 258 25 Jack 1,668 0.691 -2 92
26 Virginia 3,263 0.739 3 408 26 Carl 1,574 0.652 0 235
27 Thelma 3,166 0.717 -2 190 27 David 1,556 0.645 3 298
28 Martha 3,019 0.683 0 161 28 Howard 1,467 0.608 -1 157
29 Josephine 3,011 0.682 1 210 29 Joe 1,449 0.600 -4 -104
30 Gertrude 2,895 0.655 -4 -37 30 Samuel 1,398 0.579 2 269
31 Edith 2,825 0.639 4 233 31 Roy 1,394 0.577 -2 127
32 Lucille 2,740 0.620 -1 48 32 Ernest 1,338 0.554 -1 171
33 Clara 2,691 0.609 -1 26 33 Francis 1,311 0.543 3 311
34 Esther 2,676 0.606 4 298 34 Earl 1,305 0.541 -1 196
35 Emma 2,616 0.592 -1 9 35 Anthony 1,288 0.534 2 308
36 Bertha 2,606 0.590 -3 -45 36 Donald 1,275 0.528 8 415
37 Beatrice 2,522 0.571 -1 63 37 Lawrence 1,221 0.506 -2 212
38 Pauline 2,345 0.531 4 192 38 Michael 1,159 0.480 7 315
39 Agnes 2,315 0.524 2 152 39 Alfred 1,158 0.480 -1 236
40 Bessie 2,279 0.516 -3 -113 40 Kenneth 1,149 0.476 3 269
41 Elsie 2,224 0.503 3 83 41 Herbert 1,125 0.466 0 239
42 Sarah 2,201 0.498 -2 28 42 Andrew 1,098 0.455 0 214
43 Mabel 2,171 0.491 3 48 43 Eugene 1,058 0.438 -4 170
44 Julia 2,158 0.488 5 84 44 Stanley 997 0.413 3 236
45 Ida 2,119 0.480 2 12 45 Charlie 978 0.405 -11 -129
46 Eva 2,109 0.477 -1 -14 46 Leonard 953 0.395 0 160
47 Viola 2,083 0.471 1 -7 47 Sam 928 0.384 -7 40
48 Pearl 2,075 0.470 -9 -102 48 Elmer 894 0.370 0 134
49 Eleanor 2,035 0.461 6 237 49 Herman 853 0.353 3 157
50 Myrtle 2,033 0.460 -7 -112 50 Peter 845 0.350 6 214

 

United States name popularity data is provided by the Social Security Administration and is based on Social Security card applications.

Data for a given year is not made available until well into the next year.

Data reflects what was recorded and has not been edited for errors, so for example the gender associated with a name may be incorrect.

The more babies that are given a particular name, the higher the popularity ranking. If multiple names have the same usage, the tie is broken by assigning popularity rank in alphabetical order. Therefore in the case of names with fewer occurrences, names with the same number of occurrences may have vastly different rankings because they will be interranked alphabetically.

To safeguard privacy, the SSA does not include names with less than 5 occurrences.

Please note, we update the data each May when the SSA releases new figures. All data changes at that time, including previous years, which will change minutely based on new information.