Names of the Week
*
*
Word of the Week
 More

Top 1000 Most Popular U.S. Baby Names Of 1889

* If Year is set to 'All', Compare To may only be set to 2018 and Order By defaults to Number High to Low.
** If Compare To year is not Year-1, Top may only be set to 100.

 

Page  of  20
1889 Popular Names U.S. - Top 1000 Baby Names
  Change from
1888
  Change from
1888
Girls Number
of Girls
% Rank Number Boys Number
of Boys
% Rank Number
1 Mary 11,648 6.156 0 -106 1 John 8,548 7.181 0 -699
2 Anna 5,062 2.675 0 80 2 William 7,772 6.529 0 -933
3 Elizabeth 3,058 1.616 0 -166 3 James 5,020 4.217 0 -542
4 Margaret 2,917 1.542 1 13 4 George 4,430 3.722 0 -482
5 Emma 2,884 1.524 -1 -203 5 Charles 4,199 3.528 0 -392
6 Minnie 2,624 1.387 0 -30 6 Frank 2,975 2.499 0 -484
7 Florence 2,465 1.303 1 21 7 Joseph 2,729 2.293 0 -264
8 Ethel 2,463 1.302 1 89 8 Harry 2,559 2.150 1 -200
9 Bessie 2,343 1.238 1 65 9 Robert 2,513 2.111 -1 -301
10 Clara 2,319 1.226 1 89 10 Edward 2,299 1.931 1 -171
11 Bertha 2,293 1.212 -4 -157 11 Henry 2,286 1.920 -1 -310
12 Alice 2,145 1.134 1 -57 12 Thomas 2,233 1.876 0 -216
13 Annie 2,123 1.122 1 -65 13 Walter 1,916 1.610 0 -124
14 Ida 2,122 1.121 -2 -107 14 Arthur 1,668 1.401 0 -42
15 Grace 2,049 1.083 0 -41 15 Fred 1,554 1.306 0 -111
16 Mabel 1,947 1.029 1 117 16 Albert 1,353 1.137 0 -216
17 Helen 1,909 1.009 -1 62 17 Clarence 984 0.827 0 -38
18 Edna 1,815 0.959 4 128 18 Roy 888 0.746 2 32
19 Nellie 1,752 0.926 2 16 19 Louis 837 0.703 0 -47
20 Sarah 1,730 0.914 0 -25 20 Samuel 810 0.680 -2 -121
21 Martha 1,711 0.904 -2 -58 21 Benjamin 760 0.638 4 -21
22 Ella 1,647 0.870 -4 -127 22 David 757 0.636 -1 -44
23 Lillian 1,640 0.867 0 -16 23 Ernest 736 0.618 4 -30
24 Pearl 1,588 0.839 2 -3 24 Richard 711 0.597 2 -61
25 Laura 1,567 0.828 0 -57 25 Joe 708 0.595 -2 -81
26 Rose 1,550 0.819 1 -40 26 Willie 708 0.595 -2 -78
27 Carrie 1,547 0.818 -3 -100 27 Carl 704 0.591 2 29
28 Gertrude 1,543 0.815 0 75 28 Earl 688 0.578 2 13
29 Edith 1,523 0.805 0 70 29 Charlie 685 0.575 -7 -111
30 Marie 1,436 0.759 10 178 30 Will 631 0.530 -2 -76
31 Eva 1,372 0.725 3 43 31 Jesse 576 0.484 1 -61
32 Cora 1,365 0.721 -1 -68 32 Oscar 572 0.481 -1 -75
33 Myrtle 1,361 0.719 2 51 33 Andrew 561 0.471 0 -54
34 Frances 1,351 0.714 -4 -101 34 Elmer 557 0.468 5 30
35 Hattie 1,328 0.702 1 30 35 Paul 556 0.467 3 27
36 Maude 1,293 0.683 -4 -103 36 Daniel 515 0.433 -1 -51
37 Lillie 1,289 0.681 4 40 37 Raymond 511 0.429 8 42
38 Louise 1,283 0.678 -5 -51 38 Howard 503 0.423 2 -10
39 Jennie 1,252 0.662 -2 -46 39 Ralph 495 0.416 -3 -52
40 Julia 1,201 0.635 -2 -91 40 Sam 486 0.408 -6 -121
41 Elsie 1,199 0.634 6 87 41 Alfred 472 0.397 -4 -64
42 Catherine 1,198 0.633 0 -14 42 Herbert 472 0.397 1 -13
43 Jessie 1,196 0.632 0 -4 43 Ben 453 0.381 4 -10
44 Mattie 1,173 0.620 -5 -95 44 Frederick 451 0.379 -2 -45
45 Lena 1,096 0.579 0 -66 45 Peter 425 0.357 -4 -73
46 Ruth 1,073 0.567 13 223 46 Lee 415 0.349 2 -15
47 Lula 1,067 0.564 -3 -106 47 Lewis 414 0.348 3 2
48 Hazel 1,056 0.558 7 158 48 Herman 405 0.340 3 2
49 Josephine 1,047 0.553 0 46 49 Claude 386 0.324 6 12
50 Agnes 1,033 0.546 -2 -13 50 Tom 379 0.318 -1 -37

 

United States name popularity data is provided by the Social Security Administration and is based on Social Security card applications.

Data for a given year is not made available until well into the next year.

Data reflects what was recorded and has not been edited for errors, so for example the gender associated with a name may be incorrect.

The more babies that are given a particular name, the higher the popularity ranking. If multiple names have the same usage, the tie is broken by assigning popularity rank in alphabetical order. Therefore in the case of names with fewer occurrences, names with the same number of occurrences may have vastly different rankings because they will be interranked alphabetically.

To safeguard privacy, the SSA does not include names with less than 5 occurrences.

Please note, we update the data each May when the SSA releases new figures. All data changes at that time, including previous years, which will change minutely based on new information.